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Situation 1:  Investigating Properties of Operations 

Prompt: 
In a course for secondary teachers, students proved various properties of the real 
number operations of addition and multiplication starting from the field axioms of 
the real number system.  For example, they proved such properties as “for all real 
numbers a and b, (-a)(-b)=ab.  In an activity to assess their progress, students 
were asked to explore the properties of the following “funny addition” operation 
on the integers: 
 

For all integers a and b, ab =  
𝑎 + 𝑏 𝑖𝑓 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑎 − 𝑏 𝑖𝑓 𝑎 𝑖𝑠 𝑜𝑑𝑑

  

 
Among other things, they were asked to compare the properties of funny addition 
with those of conventional integer addition and justify their conclusions.  One 
student offered the following rationale that was similar to responses by several 
others in the class:  “32 = 1 and 23 = 5.  So the 32 doesn’t commute. To 
prove this in general, if x is even and y is odd then xy=x + y and yx = y-x .  
Since y-x ≠x+y, we can conclude that the funny addition is not commutative. “ 
 

Commentary: 
Algebra is the study of operations and relations on sets of objects commonly 
represented by variables.  In high school algebra the set of objects is usually the 
real numbers.  Sometimes the set is restricted, as in the above example, to 
subsets of the real numbers.  Teachers of high school algebra can build a better 
sense for operations and the interconnectedness of the operations’ properties by 
reasoning about unusual operations.  Many foci emerge in the above prompt.  
One mathematical focus is the understanding of what it means to say that an 
operation commutes on a set.  Certainly this has branches reaching into areas of 
secondary mathematics such as matrix operations, function operations (e.g. 
composition), and geometric transformations to name the major ones.   This 
understanding depends on students having a sense for the hidden quantifiers so 
often present but unstated in their reasoning.  A second mathematical focus 
relates to proving or disproving that an operation has some given property.   In 
the above case there seems to be a muddling of the logic of counterexamples and 
the norms for proving things in an algebraic context.  A third focus is the broader 
mathematical question about where this operation came from, where it leads, 
what its properties actually are, and what larger problem space it represents. 



 Mathematical Focus 1 
To reason about the properties of a binary operation, one must be clear about the 
set of numbers the operation is restricted to and the definition of the properties. 
 
The commutative property of addition of real numbers states that for all a and b 
in the set of real numbers, a+b = b+a. This statement is typical of many such 
statements students encounter in algebra texts.  In general, when a binary 
operation Ω is defined on a set S, the claim that Ω commutes on S means that for 
all a and b in S, a Ω b = b Ω a.  To prove such a claim is false entails showing that 
there exists elements a and b in S such that a Ω b ≠ b Ω a. The existence of even 
one pair of elements a and b in S such that a Ω b ≠ b Ω a is sufficient proof that Ω 
does not commute on S.   
 
Whereas the commutative property involves only one quantifier, some common 
properties of operations are more complicated.  For example, in the case of the 
addition of real numbers the “Existence of an additive Identity Element” asserts 
that there exists a real number e such that for all real numbers a, e + a = a  and a 
+ e = a.  The nested quantifiers in this statement make it more challenging for 
students to reason with, even though the notion of an identity element seems so 
simple.  Likewise the “Existence of additive inverses” property of addition of real 
numbers asserts that for all real numbers a, there exists a number b such that a+b 
= e and b+a = e, where e is the additive identity.  Closure is another property that 
challenges student thinking.  In addition to quantifiers, the property of closure for 
an operation requires students to focus on the set of numbers which the 
operation is restricted to when it is said to be “closed on the set.”      
 
In the case of the operation defined in the prompt, many students have difficulty 
proving that the operation has the “Existence of Identity” and the “Existence of 
Inverses” properties. In the case of closure they are often not sure where to begin 
except to demonstrate closure by using some specific examples or to say that the 
operation always makes sense or “always gives an answer.”   These difficulties are 
not unique to the situation in the prompt.  Similar difficulties are encountered 
when students attempt to prove that multiplication of nxn matrices of real 
numbers does not have the “Existence of Inverses” property since they often have 
a problem negating the nested quantified statement that defines the property.  In 
this regard, the composition of functions and the composition of transformations 
of geometric figures offer other good contexts for exploring the properties of 
operations.   



 

Mathematical Focus 2 
When students are unclear about the definition of a property of an operation, 
including the quantifiers in that definition, their reasoning about the operation is 
often incorrect and imprecise.   
 
In the prompt, the student appears either to be unaware that a single 
counterexample falsifies the claim that  is commutative or to be assuming some 
norms for proving that are unnecessary for the task at hand.  In the context 
suggested in the prompt, the students had been using algebra to prove that 
addition and multiplication of real numbers had many familiar properties.  They 
may not have been challenged to prove that some unfamiliar operation did not 
have some particular property.   Confronted with such a challenge they might 
have felt compelled to imitate the kinds of proofs they had been doing and use a 
general algebraic argument.  On the other hand, the students might have been 
unclear about the quantifier in the claim that an operation commutes.  They may 
have felt that proving that the operation does not commute meant they had to 
prove that it did not commute most of the time or prove some claim about the 
circumstances under which it did not commute.  
 
Sometimes students appear to mistake what is meant by the words Identity and 
Inverse and forget that they are always used relative to some specific operation.  
In the case of the  operation, this is manifested in claims such as “ does not 
have the property of Inverses since the identity is 0 and 3-3≠0.“   It is not hard to 
construct operations on the real numbers that help to reveal such 
misunderstandings.  For example, consider the operations where a and b are any 

real numbers:  a  b = a + b +1   and   a  b = ab + a + b.  These two operation on 
the real numbers have all of the properties of a field. However, -1 is the identity 

for  and 0 is the identity for .   Even when students prove that -1 is the identity 

for the  operation, they often proceed to argue that  –(a+1) is the inverse of a 

since a–(a+1)= a + –(a+1) +1 = 0.  Students seem to have difficulty giving up the 
notion that inverses have to combine to give you “0” in cases where the operation 
corresponds to the “addition” operation in the field structure and combine to give 
you “1” in cases where the operation corresponds to the “multiplication” of a 
field structure.   
 
 



Mathematical Focus 3 
 
Reasoning about operations and their properties gets at the very heart 
of algebra and is facilitated by the use of algebra.   
 
The operation in the prompt is one example out of many similar operations one 
can have students explore.  It is a non-commutative (non-abelian) group 
operation on the integers with identity element 0.  To prove its properties one 
generally has to break the possibilities down into cases depending on whether the 
numbers are even or odd.  For example, if a is even then its -inverse is –a. If a is 
odd then its -inverse is a.  Here the teachers encounter an “addition” operation 
where the identity is still 0 but the negative integers are generally not the 
inverses of the positive integers relative to the operation.  To prove  is 
associative, one must show that for any integers a, b, and c, a(bc)= (ab)c.   
There are eight cases which are captured in the following table where “e” 
indicates the number is even and “o” indicates the number is odd.  In each case 
the  is eliminated from the expressions by using the even and odd 
characteristics of a, b, and c and the definition of the operation. 
 

 

a b c a(bc) (ab)c 
e e e a+(b+c) (a+b)+c 

e e o a+(b+c) (a+b)+c 

e o e a+ (b-c) (a+b)-c 
e o o a+ (b-c) (a+b)-c 

o e e a- (b+c) (a-b)-c 
o e o a- (b+c) (a-b)-c 

o o e a-(b-c) (a-b)+c 

o o o a-(b-c) (a-b)+c 
 
 
After making the table students conclude that in each case the operation is 
associative and notice that the value of c did not matter in the comparison of 
a(bc) with  (ab)c.  Hence, only four cases needed to be considered.   
 



The operation is a generalization of a similar operation applied to the 
integers modulo n, where n is an integer greater than 1: 

For all a and b elements of Zn (the integers modulo n), 

ab =  
(𝑎 + 𝑏) 𝑚𝑜𝑑 𝑛 𝑖𝑓 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛
 𝑎 − 𝑏 𝑚𝑜𝑑 𝑛 𝑖𝑓 𝑎 𝑖𝑠 𝑜𝑑𝑑

  

When n is odd, the operation on Zn is not associative and fails in other important 
aspects of group operations.  When n is even, the operation is a group operation 
on Zn and is algebraically the same as the group of symmetries of a regular 
polygon with n/2 sides.  
  
 There are many contexts using matrix multiplication or function 
composition that lead student to similar investigations of the properties of matrix 
and function operations.  Matrix multiplication is not commutative (nor is 
function composition) unless significant restrictions are placed on the set of 
objects the operations are applied to.   Secondary mathematics teachers can be 
challenged to create restricted systems in which matrix multiplication does 
commute on the restricted set of matrices.   


